Advertisement
Research Article| Volume 66, P23-29, September 2022

New insights on growth trajectory in infants with complex congenital heart disease

      Highlights

      • We identified 4 classes of WAZ-GT in infants with cCHD.
      • The same classes were found in one and two ventricle cCHD.
      • Half of infants fell into poor WAZ-GT classes.
      • Interventions can target the predictors of poor WAZ-GT.

      Abstract

      Purpose

      We aimed to describe the weight-for-age Z-score growth trajectory (WAZ-GT) of infants with complex congenital heart disease (cCHD) after neonatal cardiac surgery in the first 4 months of life and assess potential risk factors.

      Methods

      We utilized data from a previously reported trial of the REACH telehealth home monitoring (NCT01941667) program which evaluated 178 infants with cCHD from 2012 to 2017. Over the first 4 months of life, weekly infant weights were converted to WAZ. WAZ-GT classes were identified using latent class growth modeling. Multinomial logistic regression models were used to examine the associations between potential risk factors and WAZ-GT classes.

      Results

      Four distinct classes of WAZ-GT were identified: maintaining WAZ > 0, 14%; stable around WAZ = 0, 35%; partially recovered, 28%; never recovered, 23%. Compared with reference group “stable around WAZ=0,” we identified clinical and sociodemographic determinants of class membership for the three remaining groups. “Maintaining WAZ > 0” had greater odds of having biventricular physiology, borderline appetite, and a parent with at least a college education. “Partially recovered” had greater odds of hospital length of stay>14 days and being a single child in the household. “Never recovered” had greater odds hospital length of stay >14 and > 30 days, tube feeding at discharge, and low appetite.

      Conclusions

      This study described distinct classes of WAZ-GT for infants with cCHD early in infancy and identified associated determinants.

      Practice implications

      Findings from this study can be used in the identification of infants at risk of poor WAZ-GT and in the design of interventions to target growth in this vulnerable patient population.

      Keywords

      Abbreviations:

      cCHD (complex congenital heart disease), LOS (length of stay), WAZ (weight-for-age Z-score), WAZ-GT (weight-for-age Z-score growth trajectory)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Al-Radi O.O.
        • Harrell Jr., F.E.
        • Caldarone C.A.
        • McCrindle B.W.
        • Jacobs J.P.
        • Williams M.G.
        • Williams W.G.
        Case complexity scores in congenital heart surgery: A comparative study of the aristotle basic complexity score and the risk adjustment in congenital heart surgery (RACHS-1) system.
        The Journal of Thoracic and Cardiovascular Surgery. 2007, Apr; 133: 865-875
        • Anderson J.B.
        • Iyer S.B.
        • Schidlow D.N.
        • Williams R.
        • Varadarajan K.
        • Horsley M.
        • National Pediatric Cardiology Quality Improvement, C
        Variation in growth of infants with a single ventricle.
        The Journal of Pediatrics. 2012, Jul; 161 (e11; quiz 21 e12–13): 16-21
        • Anderson J.B.
        • Marino B.S.
        • Irving S.Y.
        • Garcia-Espana J.F.
        • Ravishankar C.
        • Stallings V.A.
        • Medoff-Cooper B.
        Poor post-operative growth in infants with two-ventricle physiology.
        Cardiology in the Young. 2011, Aug; 21: 421-429
        • Andruff H.
        • Carraro N.
        • Thompson A.
        • Gaudreau P.
        • Louvet B.
        Latent class growth modelling: A tutorial.
        Tutorial in Quantitative Methods for Psychology. 2009; 5: 11-24
        • Avitabile C.M.
        • Leonard M.B.
        • Brodsky J.L.
        • Whitehead K.K.
        • Ravishankar C.
        • Cohen M.S.
        • Goldberg D.J.
        Usefulness of insulin like growth factor 1 as a marker of heart failure in children and young adults after the Fontan palliation procedure.
        The American Journal of Cardiology. 2015, Mar 15; 115: 816-820
        • Becnel J.N.
        • Williams A.L.
        Using latent class growth modeling to examine longitudinal patterns of body mass index change from adolescence to adulthood.
        Journal of the Academy of Nutrition and Dietetics. 2019, Nov; 119: 1875-1881
        • Blasquez A.
        • Clouzeau H.
        • Fayon M.
        • Mouton J.B.
        • Thambo J.B.
        • Enaud R.
        • Lamireau T.
        Evaluation of nutritional status and support in children with congenital heart disease.
        European Journal of Clinical Nutrition. 2016, Apr; 70: 528-531
        • Burch P.T.
        • Gerstenberger E.
        • Ravishankar C.
        • Hehir D.A.
        • Davies R.R.
        • Colan S.D.
        • Pediatric Heart Network, I
        Longitudinal assessment of growth in hypoplastic left heart syndrome: Results from the single ventricle reconstruction trial.
        Journal of the American Heart Association. 2014, Jun 23; 3e000079
        • Burnham N.
        • Ittenbach R.F.
        • Stallings V.A.
        • Gerdes M.
        • Zackai E.
        • Bernbaum J.
        • Gaynor J.W.
        Genetic factors are important determinants of impaired growth after infant cardiac surgery.
        The Journal of Thoracic and Cardiovascular Surgery. 2010, Jul; 140: 144-149
        • Butto A.
        • Mercer-Rosa L.
        • Teng C.
        • Daymont C.
        • Edelson J.
        • Faerber J.
        • Cohen M.S.
        Longitudinal growth in patients with single ventricle cardiac disease receiving tube-assisted feeds.
        Congenital Heart Disease. 2019, Nov; 14: 1058-1065
        • Chung H.T.
        • Chang Y.S.
        • Liao S.L.
        • Lai S.H.
        The effects of corrective surgery on endothelial biomarkers and anthropometric data in children with congenital heart disease.
        The Journal of International Medical Research. 2017, Apr; 45: 493-503
        • Cohen M.S.
        • Zak V.
        • Atz A.M.
        • Printz B.F.
        • Pinto N.
        • Lambert L.
        • McCrindle B.W.
        Anthropometric measures after Fontan procedure: Implications for suboptimal functional outcome.
        American Heart Journal. 2010, Dec; 160 (1098 e1091): 1092-1098
        • Costello C.L.
        • Gellatly M.
        • Daniel J.
        • Justo R.N.
        • Weir K.
        Growth restriction in infants and young children with congenital heart disease.
        Congenital Heart Disease. 2015, Sep-Oct; 10: 447-456
        • Daymont C.
        • Neal A.
        • Prosnitz A.
        • Cohen M.S.
        Growth in children with congenital heart disease.
        Pediatrics. 2013, Jan; 131: e236-e242
        • Di Maria M.V.
        • Glatz A.C.
        • Ravishankar C.
        • Quartermain M.D.
        • Rush C.H.
        • Nance M.
        • Goldberg D.J.
        Supplemental tube feeding does not mitigate weight loss in infants with shunt-dependent single-ventricle physiology.
        Pediatric Cardiology. 2013, Aug; 34: 1350-1356
        • Gaynor J.W.
        • Stopp C.
        • Wypij D.
        • Andropoulos D.B.
        • Atallah J.
        • Atz A.M.
        • McQuillen P.S.
        • International Cardiac Collaborative on Neurodevelopment, I
        Neurodevelopmental outcomes after cardiac surgery in infancy.
        Pediatrics. 2015, May; 135: 816-825
        • Hansson L.
        • Ohlund I.
        • Lind T.
        • Stecksen-Blicks C.
        • Rydberg A.
        Dietary intake in infants with complex congenital heart disease: A case-control study on macro- and micronutrient intake, meal frequency and growth.
        Journal of Human Nutrition and Dietetics. 2016, Feb; 29: 67-74
        • Hapuoja L.
        • Kretschmar O.
        • Rousson V.
        • Dave H.
        • Naef N.
        • Latal B.
        Somatic growth in children with congenital heart disease at 10 years of age: Risk factors and longitudinal growth.
        Early Human Development. 2021, May; 156105349
        • Hsieh A.
        • Tabbutt S.
        • Xu D.
        • Barkovich A.J.
        • Miller S.
        • McQuillen P.
        • Peyvandi S.
        Impact of perioperative brain injury and development on feeding modality in infants with single ventricle heart disease.
        Journal of the American Heart Association. 2019, May 21; 8e012291
        • Hsu D.T.
        • Zak V.
        • Mahony L.
        • Sleeper L.A.
        • Atz A.M.
        • Levine J.C.
        • Pediatric Heart Network I.
        Enalapril in infants with single ventricle: Results of a multicenter randomized trial.
        Circulation. 2010, Jul 27; 122: 333-340
        • International Cardiac Collaborative on Neurodevelopment, I
        Impact of operative and postoperative factors on neurodevelopmental outcomes after cardiac operations.
        The Annals of Thoracic Surgery. 2016, Sep; 102: 843-849
        • Kuip M.
        • Hoos M.B.
        • Forget P.P.
        • Westerterp K.R.
        • Gemke R.
        • Meer K.
        • d.
        Energy expenditure in infants with congenital heart disease, including a meta-analysis.
        Acta Paediatrica. 2007; 92: 921-927
        • Lambert L.M.
        • McCrindle B.W.
        • Pemberton V.L.
        • Hollenbeck-Pringle D.
        • Atz A.M.
        • Ravishankar C.
        • Pediatric Heart Network, I
        Longitudinal study of anthropometry in Fontan survivors: Pediatric Heart Network Fontan study.
        American Heart Journal. 2020, Jun; 224: 192-200
        • Lisanti A.J.
        • Savoca M.
        • Gaynor J.W.
        • Mascarenhas M.R.
        • Ravishankar C.
        • Sullivan E.
        • Irving S.Y.
        Standardized feeding approach mitigates weight loss in infants with congenital heart disease.
        The Journal of Pediatrics. 2021, Apr; 231: 124-130 e121
        • Mattsson M.
        • Maher G.M.
        • Boland F.
        • Fitzgerald A.P.
        • Murray D.M.
        • Biesma R.
        Group-based trajectory modelling for BMI trajectories in childhood: A systematic review.
        Obesity Reviews. 2019, Jul; 20 (Citation Blinded for Peer Review): 998-1015
        • Medoff-Cooper B.
        • Irving S.Y.
        • Marino B.S.
        • Garcia-Espana J.F.
        • Ravishankar C.
        • Bird G.L.
        • Stallings V.A.
        Weight change in infants with a functionally univentricular heart: From surgical intervention to hospital discharge.
        Cardiology in the Young. 2011, Apr; 21: 136-144
        • Medoff-Cooper B
        • Marino B.S.
        • Fleck D.A.
        • Lisanti A.J.
        • Golfenshtein N.
        • Ravishankar C.
        • Curley M.A.Q.
        Telehealth Home Monitoring and Postcardiac Surgery for Congenital Heart Disease.
        Pediatrics. 2020; 146: e20200531https://doi.org/10.1542/peds.2020-0531
        • Medoff-Cooper B.
        • Ravishankar C.
        Nutrition and growth in congenital heart disease: A challenge in children.
        Current Opinion in Cardiology. 2013, Mar; 28: 122-129
        • Mitting R.
        • Marino L.
        • Macrae D.
        • Shastri N.
        • Meyer R.
        • Pathan N.
        Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease.
        Pediatric Critical Care Medicine. 2015, Jun; 16: 448-452
        • Mo W.
        • Bodner T.E.
        Growth mixture modeling.
        Organizational Research Methods. 2007; 10: 635-656
        • Monteiro F.P.
        • de Araujo T.L.
        • Lopes M.V.
        • Chaves D.B.
        • Beltrao B.A.
        • Costa A.G.
        Nutritional status of children with congenital heart disease.
        Revista Latino-Americana de Enfermagem. 2012, Nov-Dec; 20: 1024-1032
        • Nydegger A.
        • Walsh A.
        • Penny D.J.
        • Henning R.
        • Bines J.E.
        Changes in resting energy expenditure in children with congenital heart disease.
        European Journal of Clinical Nutrition. 2009, Mar; 63: 392-397
        • O’Brien S.M.
        • Clarke D.R.
        • Jacobs J.P.
        • Jacobs M.L.
        • Lacour-Gayet F.G.
        • Pizarro C.
        • Edwards F.H.
        An empirically based tool for analyzing mortality associated with congenital heart surgery.
        The Journal of Thoracic and Cardiovascular Surgery. 2009, Nov; 138: 1139-1153
        • de Onis M.
        • Garza C.
        • Onyango A.W.
        • Rolland-Cachera M.F.
        • le Comite de nutrition de la Societe francaise de, p
        WHO growth standards for infants and young children.
        Archives de Pédiatrie. 2009, Jan; 16 (Les standards de croissance de l’Organisation mondiale de la sante pour les nourrissons et les jeunes enfants.): 47-53
        • Ravishankar C.
        • Zak V.
        • Williams I.A.
        • Bellinger D.C.
        • Gaynor J.W.
        • Ghanayem N.S.
        • Pediatric Heart Network I.
        Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: A report from the pediatric heart network infant single ventricle trial.
        The Journal of Pediatrics. 2013, Feb; 162 (e252): 250-256
        • Ross F.J.
        • Radman M.
        • Jacobs M.L.
        • Sassano-Miguel C.
        • Joffe D.C.
        • Hill K.D.
        • Latham G.J.
        Associations between anthropometric indices and outcomes of congenital heart operations in infants and young children: An analysis of data from the Society of Thoracic Surgeons Database.
        American Heart Journal. 2020, Jun; 224: 85-97
        • Shi H.
        • Hu C.
        • Zhang L.
        • Tong M.
        • Li L.
        • Cui Y.
        Early growth trajectory of infants with simple congenital heart disease and complex congenital heart disease undergoing cardiac repair: A prospective cohort study in China.
        JPEN Journal of Parenteral and Enteral Nutrition. 2020, Sep 11; 45: 1181-1191
        • Slicker J.
        • Hehir D.A.
        • Horsley M.
        • Monczka J.
        • Stern K.W.
        • Roman B.
        • Feeding Work Group of the National Pediatric Cardiology Quality Improvement, C
        Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period.
        Congenital Heart Disease. 2013, Mar-Apr; 8: 89-102
        • Steurer M.A.
        • Peyvandi S.
        • Costello J.M.
        • Moon-Grady A.J.
        • Habib R.H.
        • Hill K.D.
        • Rajagopal S.
        Association between Z-score for birth weight and postoperative outcomes in neonates and infants with congenital heart disease.
        The Journal of Thoracic and Cardiovascular Surgery. 2021, Jan 29; 162 (e4): 1838-1847
        • Steward D.K.
        • Ryan-Wenger N.
        • Harrison T.M.
        • Pridham K.F.
        Patterns of growth and nutrition from birth to 6 months in infants with complex congenital cardiac defects.
        Nursing Research. 2020; 69 (Sep/Oct): S57-S65
        • Surmeli-Onay O.
        • Cindik N.
        • Kinik S.T.
        • Ozkan S.
        • Bayraktar N.
        • Tokel K.
        The effect of corrective surgery on serum IGF-1, IGFBP-3 levels and growth in children with congenital heart disease.
        Journal of Pediatric Endocrinology & Metabolism. 2011; 24: 483-487
        • Tully L.
        • Wright C.M.
        • McCormick D.
        • Garcia A.L.
        Assessing the potential for integrating routine data collection on complementary feeding to child health visits: A mixed-methods study.
        International Journal of Environmental Research and Public Health. 2019, May 16; 16
        • Vaidyanathan B.
        • Radhakrishnan R.
        • Sarala D.A.
        • Sundaram K.R.
        • Kumar R.K.
        What determines nutritional recovery in malnourished children after correction of congenital heart defects?.
        Pediatrics. 2009, Aug; 124: e294-e299
        • Van Horn M.L.
        • Fagan A.A.
        • Jaki T.
        • Brown E.C.
        • Hawkins J.D.
        • Arthur M.W.
        • Catalano R.F.
        Using multilevel mixtures to evaluate intervention effects in group randomized trials.
        Multivariate Behavioral Research. 2008; 43: 289-326
        • Webb A.L.
        • Manji K.
        • Fawzi W.W.
        • Villamor E.
        Time-independent maternal and infant factors and time-dependent infant morbidities including HIV infection, contribute to infant growth faltering during the first 2 years of life.
        Journal of Tropical Pediatrics. 2009, Apr; 55: 83-90
        • Wright C.M.
        • Parkinson K.N.
        • Drewett R.F.
        How does maternal and child feeding behavior relate to weight gain and failure to thrive? Data from a prospective birth cohort.
        Pediatrics. 2006, Apr; 117: 1262-1269
        • Wright C.M.
        • Parkinson K.N.
        • Shipton D.
        • Drewett R.F.
        How do toddler eating problems relate to their eating behavior, food preferences, and growth?.
        Pediatrics. 2007, Oct; 120: e1069-e1075